Measure on microphones

Ib Kock Rasmussen

K & K International ApS & K & K Development ApS Glostrup, Denmark

www.kk-int.dk

February 2023

Contents

Ieasure on microphones	5
Output Compress	5
Example	5
Step 1	5
Step 2	6
Step 3	6
Step 4	7
Step 5	8
Step 6	9
Step 7	9
Step 8	. 10
Step 8	. 11
Step 9	. 11

Measure on microphones

To measure on of microphone and test the frequency response requires a perfect sound source. You can look for sound sources there have a perfect frequency response as a straight line, or as a constant sound pressure. It is most likely you find no such loudspeaker there can do this.

To generate a constant sound pressure we have to make use of a device there can regulate the sound pressure to be constant or almost constant. We need a compress function to regulate the sound.

- a) A way to do this is to use a mouth simulator together a microphone there is used for an in line compressor loop to give a constant sound pressure.
- b) Another way is to use a good quality speaker and a reference microphone used together a compressor function to give a constant sound pressure at the position at the reference microphone.
- c) Again another way is to place a reference close to the DUT microphone and compare the two microphone measurements.
- d) And again another way is to place a reference close to the DUT microphone and use a compressor to generate a constant sound for the DUT microphone and correct the measurement on DUT with the reference microphone data.

Output Compress

Instead to make a compress loop our systems make use of an output compress curve. An output compress curve is the frequency response for a speaker there is used to regulate the output signal.

The sound when compressed is the output to the speaker minus the regulated level. If the compress curve dynamic range is 20 dB then the sound pressure is output level minus 20 dB.

When an output compress curve is used it is not possible to use Channel C for impedance measurement or distortion measurement.

Example

In this example solution d) is used. A standard low price speaker is used for this example. The reference and DUT microphones are placed approximate 50 cm from speaker and the two microphones are placed at same position close together.

Step 1

Figure 1 show the setup used to generate ab output compress curve. Input channel A and B is used.

The reference microphone is connected to input 5. Note both channel A and B is connected to the reference microphone.

Figure 2 show the measurement done with the setup as shown in figure 1. Note the frequency response of the low price speaker have almost a change in the output signal of approximate of 30 db in the frequency range from 20 Hz to 20 kHz.

ype Namo Chain Status	Deurse E E Clau	ronco
Description	Start J 20 Hz	
	Stop 20000 Hz Delete	э & exit
lelp File	Delay 0 mSee	
→ □ 3-L	imit Save	& exit
	Points 500 No	
	Time 5.0 Sec. F	xit
- Moye 1000 Hz	Output	
	Auto Save	
	🗆 🗆 🗆 Data App. 🗆 Data Rej. 🗆 Results	
	dB Data Path	
0 dB = 14.0	Volt c:	->
20 wSec.	Result Path	
Range Off dB Ref. Ch		
		2h D
nput	Туре	
Status 🔽 Ch A 🖾 Ch B 🗆 Ch C 🗆 Ch I		
Mux 5 5 1 Internal		
	Freq/Bw	
Detector		
Gain +20 dB 0.05 ohm	Gain +20 dB	~
	Display Zitabilitar (Dubrid to a la construction of la construction o	solute
	Belative Belative B	
1/48 V 12/3 V 11/48 V 11/48		elative

Figure 1: Setup used to measuring on microphones. Channel A and B is used. Reference microphone is placed on input 5.

Step 3

Make an out compress. The function you can find under commands. The output compress curve is brown and is the opposite of the frequency response. The output curve is shown in figure 3.

ert	Scale	T-curve	R-test	Gain A	dj. P	ol-lim	F-ave.	S-ave		Slope	Power	On P	ower Off	Spec	trum	Monito	ar	Exat								
Data	1																						636.8	HZ	-25.94	dE
-																									_	-
															+											
																	/									
														_												
) H	Z				_	_			_		_	_	_	_		_	_			_	_	_		_	20	100
																	1									

Figure 2: The frequency response of a measurement done with the setup as shown in figure 1.

Figure 3: An Out Compress done- The curve is brown. The command can be found under Commands menu.

Make a new measurement. The sound is now regulated with the compress output curve. The result is shown in figure 4.

asure Edit	Include	Reset Ph	ase The	Hi-	2 N-Check	T&S	Bl	R-23	Monitor	AI-Mo	de Eau	:							
0	4				7											are a			
·																			
											-								
0																			
20 Hz																			2
/																			
								~											

Figure 4: Measurement with compress output curve. The red curves are the regulated output.

Step 5

It is possible to make a second Out Compress and make a new measurement. This gives a better regulation. The speaker and the compress function is in this case not compete linear. Figure 5 show the result.

Figure 5: The compressed data after a second out compress function.

Go back to the setup menu. Now we have to select the DUT microphone to channel A. The DUT microphone is connected to in our case the input 4. To correct the data on the DUT microphone with dada from the reference microphone we select the reference channel to channel B. The function can be found the Compress selection. Here the compress range is 30.1 dB is displayed as information. See figure 6.

pe	Sweep
ame Chain Status	Reverse T F Slow Reference
a Output Curve	Start 20 Hz
escription	
	Stop 20000 Hz Delete & exit
elp File	Delay 0 mSec
> □ 3-Limit	Save & exit
www.in	
	Time 5.0 Sec.
Move 1000 Hz 0 Output	
	Auto Save
	🗖 🗆 Data App. 🗆 Data Rej. 🗖 Results
On Negative After -7.36 dB	Data Path
ulse Time	->
mSec. □ Sync Burst 0 dB = 14.0 Volt	Result Path
mpress	
ande 301 dB Bef Ch B ^	Filter-
	Status F Ch B F Ch C F Ch D
Status IChA IChB □ChC IChD	Har.
Aux 5 6 0 Internal 0	
	Freq/Bw
letector	
ain +20 dB +20 dB 0.05 ohm 10 000 0	Gain +20 dB +
	Display Huselate ^ Huselate ^
moothing 2/3 2/3 1/48 1/48	Relative Relative Relative
5 M .	Limit 22.6H2 ^ 25.6H2 ^ 22.6H3 ^

Figure 6: On setup menu input on Ch A is selected and Ref. Ch is selected to B.

Step 7

Go to reference mode and make a measurement. Now the channel A is the result from the DUT microphone and channel B from the reference microphone there regulate the sound pressure. See figure 7.

sure Edit	Include	Reset	Phase	Thd	Hi-	2 N-Check T&S	Bl	R-23	Monitor	AI-Mo	de Ea	at				 	 	 	
					_								 	_	 	 	 	 	_
6																			
20 Hz																			20
0,																			

Figure 7: A measurement on DUT microphone. The top display the DUT microphone. The bottom show regulated sound pressure from the reference microphone.

Step 8

The upper and lower tolerance curves can now be created. In our case the upper and lower limits are +/- 0.3 dB for the DUT microphone and for channel B the upper and lower limits are selected to +/- 3 dB for a check for the compress range. See figure 8.

Figure 8: The top display a limits on +/- 0.3 dB made. For the bottom display a limits on +/- 3 dB made for a check only.

Save the setup as reference. If a mistake are made and a new out compress sequence is wanted save the setup then load the setup and delete the Compress Curve only. Then load the setup again to make a new Our Compress curve.

Step 9

The setup is ready to be used in run-mode. Figure 9 show a measurement in run-mode. If a compress output curve is used it is displayed above the test result "approve" or "reject". See figure 9. In graph display the display look like figure 10.

Figure 9: The test result when using a Compress Output curve.

R PRO - Run Mode	- ø ×
Providence Data Data Data Data Data Data Data Dat	
Type: aa	
-66 20 Hz -20 dBV	20000
-80 20 Hz	20000

Figure 10: Test result in run-mode as graph display.